Menoufia University
Faculty of Engineering, Shebin El-Kom
Civil Engineering Department
First Semester Exam, 2017-2018
Date of Exam: 13 / 1 / 2018

Subject: Geometric Geodetic Surveying Code: CVE535
Year : Diploma level course, Public Works
Time Allowed: Three hours
Total Marks : 100 marks

Answer all Questions (Use complete equations \& clear sketches) [Marks]

Question (1)

a) Compute the mean radius of curvature along the line $A B$, given that:

$$
\begin{array}{r}
\varphi_{A}=29^{\circ} 00^{\prime} 31^{\prime \prime} N \quad, \quad \varphi_{B}=29^{\circ} 21^{\prime} 19^{\prime \prime} N, \\
\alpha_{A B}=114^{\circ} 25^{\prime} 18^{\prime \prime}, \alpha_{B A}=294^{\circ} 31^{\prime} 48^{\prime \prime}, \\
a=6378136.992 \mathrm{~m}, \frac{1}{f}=298.25723
\end{array}
$$

b) Using two methods, compute the global mean radius of curvature for the ellipsoid.

Question (2)

Given a reference ellipsoid defined by:

$$
a=6378136.415 \mathrm{~m}, \frac{1}{f}=297.8773
$$

a) Calculate the mean radius of curvature at point E, if $\varphi_{E}=26^{\circ} 00^{\prime} 17^{\prime \prime} S$,
b) Compute the radius of curvature in the meridian direction for a point at the equator,
c) Determine the radius of curvature at the poles.

Question (3)

a) Mention the difference between the 3D-Cartesian and curvilinear coordinates,
b) Explain the relation between the 3D-curvilinear coordinates of a point and the corresponding Cartesian ones; within a given geodetic system.

Question (4)

a) Discuss the direct transformation from the local geodetic to the geodetic coordinate systems,
b) Explain the inverse transformation from the geodetic into the local geodetic coordinate systems.

Question (5)

a) State the advantages of the 3D-over the 2D geodetic position computations,
b) Clarify briefly the direct and inverse geodetic problems in 3D geodetic computations.

